
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

May 17 2012

Welcome

● Please ask questions/let me know if I'm
difficult to understand.

● This is an introduction to computer
programming using Python.
● The order matters!

● Intended for people with no experience
with programming.

May 17 2012

Course Website

http://www.cs.toronto.edu/~quellan/courses/csc108/

● Note that most of the stuff in the first part of lecture is
covered in the info sheet available from the course
website.

http://www.cs.toronto.edu/~quellan/courses/csc108/

May 17 2012

Is CSC 108H for me?

● CSC 148H is offered during this term.
● Instructor is Orion Buske.
● Assumes knowledge of basic python and object

oriented concepts.
● Does more object oriented stuff and focuses on

data structures.
● Lecture is R:4-6, One 2 hour lab per week.
● http://www.cdf.toronto.edu/~csc148h/summer/

May 17 2012

Well, how can I tell?

● CSC 148H is having a one-day ramp-up.
● Saturday May 19th 10am - 4pm and

Saturday May 26th 10am - 4pm in BA 3185.
● http://www.cdf.toronto.edu/~csc148h/summer/rampup.shtml

● Intended for people haven't taken CSC 108H
but have done some object-oriented
programming.

● I encourage you do show up if you're uncertain
which course you should be taking.
● Please register if you're going.

May 17 2012

What will I be doing?

Work Weight Comment

Assignments(3) 10%,10%,12%

Midterm 13%

Labs(10) 5% 0.5% each.

Exercises(4) 2%, 2%, 3%, 3%

Final 40% Need to get at least 40%
to pass the course

May 17 2012

Assignments!

● They will be posted on the website.
● Due 11:59pm on due date, submitted online.
● You will have the option to partner with one

other person for at least two assignments.
● Not required to be monogamous.
● Can use discussion board and labs to meet

people.

May 17 2012

Late Policy

● You have 2 grace days.
● Each grace day can be used to get a 24 hour

extension on an assignment only.
● You must use grace days in increments of 1.
● Grace days cannot be stacked, if you wish.

● A team requires two grace days to get an
extension.
● Each partner in a team must contribute one grace

day.

May 17 2012

Exams!

● A midterm and a final.
● No, I don't know when or where either are yet.

● When I find out, I will post it on the website and the
forum.

● The midterm will probably be Jun 28th, in the
evening.

● They will be closed book written tests.

May 17 2012

Labs!

● Labs are done with a partner that is separate
from your assignment partner(s).

● They are the tutorials that you sign up for on
ROSI.

● They start next week.
● The room assignments are posted on the

website.
● 3 of you have not signed up for a tutorial as of

yesterday.

May 17 2012

Exercises!

● These are smaller assignments.
● They are only automarked.
● You will be able to submit before the deadline

and see the results of the automarking on
Markus.

● Will generally have 7~14 days to submit before
the deadline.

● No remarks will be given for any reason.

May 17 2012

The Book.

● Practical
Programming: An
Introduction to
Computer Science
Using Python.

● Can get it cheaply on
Amazon.

● Authors from the
department.

May 17 2012

Getting Help.

● Office Hours.
● We're deciding on these right now!

● Can ask for help from your TA during labs.
● Course Discussion board.

● Link on website.

● Undergraduate Help Centre, BA 2270 2-4,
Monday-Thursday.
● Start next Tuesday.

May 17 2012

More Help.

● If you can't make office hours or have
extenuating circumstances, you can e-mail me.
● Use quellan@cs.toronto.edu
● Not quellan@cdf.toronto.edu
● Please check the discussion board first.

● If you need more practice or another
perspective, check the getting help section of
the website.

mailto:quellan@cs.toronto.edu
mailto:quellan@cdf.toronto.edu

May 17 2012

Academic Offences

● You should do all the work that you submit
(work by your assignment partner counts).

● Never look at another team's works.
● Never show another team your work.
● Applies to all drafts and partial solutions.
● Discuss how to solve an assignment only with

course staff.

May 17 2012

Feedback

● You can also give anonymous feedback via the
feedback tab on the website.

May 17 2012

Administrative stuff that you can do!

● Read the course information sheet.
● Make sure you can find the website and

discussion board.
● Buy textbook.
● Look up your CDF username.

● Need this to submit exercises/do labs!

● If you're working on your own machine, install
the software under Python on the course
website.

May 17 2012

Break, the first.

May 17 2012

What is CSC 108H about?

● Learning the basic tools of programming.
● We use Python for this, but the tools apply to most

languages, and even scripts and macros.

● Being able to take human problems, and use
programming to solve them.

● Have a better sense of what computer science
is about.

– See how computer science can be applied to climate
modelling, bioinformatics, medical science,etc.

May 17 2012

Why Programming?

● Powerful and general.

● Can hide a poem in a
picture.

● Can remove redeye.

● Allows people to
communicate securely.

● Can find optimal paths in
huge maps.

May 17 2012

What is programming?

● A program is essentially a series of instructions.
● Like a recipe, or a knitting pattern.

● So why not use English?
● Too vague and dependent on context.

– “Eats shoots and leaves”.
● CPUs have a limited set of instructions.

● We need a language that is unambiguous.

May 17 2012

Python!

● Can be translated into a language that the CPU
speaks.
● With no translation errors.

● Python is much more precise than English.
● Means every detail needs to be specified.

● Python is the language, but what reads it?

May 17 2012

Wing

● IDE (Integrated Development Enviroment)
● A set of tools used to help us develop code.
● For now we can think of it as the program that

translates our python code for the CPU.
● A free version is linked from the website.

May 17 2012

Common Pitfalls

● Not understanding what each line of code is
supposed to do.
● Will cause mistakes if you copy one batch of code

from one program to another.
● Prevents you from being able to effectively write

your own code.

● Not being able to trace code.
● This prevents you from being able to combine

multiple lines of code.

May 17 2012

Types

● Every base object in python has a type.
● Know what type every object you are using is.
● Useful for sanity checks.

May 17 2012

Python as a Calculator

● The shell will interpret lines of python that we
feed it.
● Thus it is useful to check the type of any expression

we are using.
● So we can be sure that we agree with python as to

what we are doing.

● Basic mathematical operations are part of
python.
● So we can use python as a calculator.

May 17 2012

Python isn't very good at calculating

● You have multiplication, addition, subtraction,
division remainder, and powers (*,+,-,/,%,**) but
sometimes the answers are weird.

● If you give python integers, it will assume that
you want integers back.

● For fractions, one uses floating point numbers.
● Python interprets any number with a decimal in it as

a float.

● Floats are only approximations of real numbers.

May 17 2012

Variables

● A variable is a name that refers to a value.
● Variables let us store and reuse values in

several places.
● But to do this we need to define the variable,

and then tell it to refer to a value.
● We do this using an assignment statement.

May 17 2012

Assignment Statements

● Form: variable = expression
● An expression is a legal sentence in python that can

be evaluated.
● So far we've put in math expressions into the shell

and seen them be evaluated to single numbers.

● What it does:
● 1. Evaluate the expression on the RHS.(This value

is a memory address)
● 2. Store the memory address in the variable on the

LHS.

May 17 2012

Assignment Statements.

● 1. Evaluate the expression on the RHS.(This value
is a memory address)

● 2. Store the memory address in the variable on the
LHS.

● What this means is that a variable is a name
and a memory address. The name points to a
memory address where the value is stored.

● This means that variables in python behave
fundamentally differently than variables in math.
● Understanding is required to be able to trace code!

May 17 2012

Tracing Code with Variables

● When tracing code, we imagine the variables as
names, and their values as objects they refer
to.

● We draw names on one side, and the objects
they refer to on the other.

May 17 2012

Tracing Code with Variables

● When tracing code, we imagine the variables as
names, and their values as objects they refer
to.

● We draw names on one side, and the objects
they refer to on the other.

x: 0x1
int

0x1
10

May 17 2012

Tracing Code with Variables

x = 10

y = 5+4

x: 0x1

int

0x1
10

y: 0x2

int

0x2
9

May 17 2012

Tracing Code with Variables

x = 10

y = 5+4

x = 13

x: 0x3

int

0x3
13

y: 0x2

int

0x2
9

int

0x1
10

May 17 2012

Tracing Code with Variables

x = 10

y = 5+4

x = 13

x: 0x3

int

0x3
13

y: 0x2

int

0x2
9

May 17 2012

Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● Which one of the two pieces of code above is
legal, and what are the values at the end?

May 17 2012

Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● Which one of the two pieces of code above is
legal, and what are the values at the end?

May 17 2012

Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● x refers to 16
● y refers to 31

May 17 2012

Functions

● Sometimes we want to reuse code, with slightly
different variables.

● If we need to take the average of lots of pairs of
numbers, we could do

x = (num1 + num2)/2

● And then everywhere we need an average, we
copy this code, and change the variable name.

● But what if there's a mistake?
● Need to change all the places we take this average.

May 17 2012

Functions

● Instead we can reuse code with functions.
● If we have the following somewhere:

def avg(num1, num2):

 return (num1 + num2)/2

● We can replace x = (num1 + num2)/2 with
 x = avg(num1, num2)

● Now to fix the problem with our average we only need
to change the return statement to:

return (num1 + num2)/2.0

May 17 2012

Functions

● A function definition has the form:
def function_name(parameters):

 block

● def is a python keyword; it cannot be used for
naming functions or variables.

● A parameter of a function is a variable. A function
can have any number of parameters, including 0.

● A block is a sequence of legal python statments.
– A block must be indented.

● If the block contains the keyword return, it returns a
value; otherwise it returns the special value None.

May 17 2012

Functions

● Defining a function is different from calling it.
● Think about creating a recipe, vs actually

cooking it.
● If we create a recipe for a cake, we don't have

any cake yet, we only know how to create one.
● But once we have a recipe, we can create as

many cakes as we like.

May 17 2012

Functions and Variables

● Consider the following Code:

def foo(y):
z = y

 return z

x = 10

foo(x)

print z

● What happens?

May 17 2012

Functions and Variables

def foo(y):

 z = y

 return z

x = 10

foo(x)

print z

● What happens?

● Functions can have
variables that exist
only within the
function.
● These are called local

variables.

May 17 2012

Functions and Variables

def foo(y):

 z = y

 return z

x = 10

foo(x)

print z

● What happens?

● Functions can have
variables that exist
only within the
function.
● These are called local

variables.
● They exist only within

the red rectangle.

May 17 2012

Functions and Local Variables

● Recall the generic definition of a function:
def function_name(parameters):

 block

remainder of code
● Variables defined inside of a function are called local.

– This includes the parameters.
● Variables defined outside of a function are called global.

May 17 2012

Functions and Local Variables

● Recall the generic definition of a function:
def function_name(parameters):

 block

remainder of code
● Variables defined inside of a function are called local.

– This includes the parameters.
● Variables defined outside of a function are called global.
● Local variables live in the red box.
● Local variables override global variables with the same

name.

May 17 2012

Functions and Variables

● Consider the following Code:

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● What gets printed?

May 17 2012

Functions and Variables

● Consider the following Code:

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● What gets printed? 10, then 11. Why?

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
● We need to step into

the function.

int

0x1
10

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = ?

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to differentiate

between local and
global variables

int

0x1
10

x = ?

x = 0x1

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to differentiate

between local and
global variables

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to evaluate the

parameter for foo.
● foo(x) is in global

scope, uses global x.

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(0x1)

● Let's trace the code.
● Need to evaluate the

parameter for foo.
● foo(x) is in global

scope, uses global x.

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(0x1)

● Let's trace the code.
● Now we can assign

local value of x.

int

0x1
10

x = 0x1

x = 0x1

foo locals:

Globals:

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x1

x = 0x1

foo locals:

Globals:

int

0x1
10

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.
● To determine which x

we choose, we start at
the top and move
down.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return 0x2

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return 0x2

x = 10

print x

print 0x2

● Let's trace the code.
● When the function is called,

we kill local variables, and
return the memory address.

int

0x2
11

x = 0x1Globals:

int

0x1
10

May 17 2012

Functions and Variables

def foo(x):

 x = 11

 return x

x = 10

print x

print 0x2

● Let's trace the code.
● So we can see why the

second return value is 11.

int

0x2
11

x = 0x1Globals:

int

0x1
10

May 17 2012

Functions and Comments

● Often functions have complicated code.
● To make it easier for humans to understand, we

often put in english sentences that we tell the
computer to ignore.
● These are called comments.

● Two ways of commenting in python:

#The computer ignores this line.

'''The computer ignores all the lines between triple
quotes, regardless of how many there are.'''

May 17 2012

Functions and Types

● Recall that every base object in python has a
type.

● For now, it is useful to think of functions as
things that take base objects of some types and
generate new base objects that have types.

● So it is a recipe that takes some base objects
and produces a new base object.

May 17 2012

Function Conventions

● Recall the format of a function:

def function_name(parameters):

 block

● This is all that is legally required for a function,
but in practice we really use:

def function_name(parameters):

 '''(parameter types)-> output type

 Description of what the function does.'''

 block

May 17 2012

Function Conventions

def avg(num1, num2):

 return (num1 + num2)/2.0

● Should actually be:

def avg(num1, num2):

 '''(int/float, int/float) -> float

 Takes two numbers and returns their average.'''

 return (num1 + num2)/2

May 17 2012

Function Conventions

def avg(num1, num2):

 '''(int/float, int/float) -> float

 Takes two numbers and returns their average.'''

 return (num1 + num2)/2

● Not:

def avg(num1, num2):

 '''(int/float, int/float) -> float

 Takes two numbers and returns their average
 by adding them and dividing the result by 2.0.'''

 return (num1 + num2)/2

May 17 2012

Function Conventions

def avg(num1, num2):

 '''(int/float, int/float) -> float

 Takes two numbers and returns their average.'''

 return (num1 + num2)/2

● Not:

def avg(num1, num2):

 '''(int/float, int/float) -> float

 Takes two numbers and returns their average
 by adding them and dividing the result by 2.0.'''

 return (num1 + num2)/2

May 17 2012

Naming Conventions.

● Naming rules and conventions apply to
functions, variables and any other kind of name
that you will see.

● Must start with a letter or underscore.
● Can include letters, numbers, and underscores

and nothing else.
● Case matters, so age is not same name as

Age.

May 17 2012

Naming Conventions.

● Python Convention: pothole_case
● That is, all lower case, and underscores seperate

words.

● CamelCase is sometimes seen, but not for
functions and variables.
● That is, capital letters separate words.

● Single letters are rarely capitalised.
● These conventions are important for legibility

which factors into maintaining code.

May 17 2012

Python comes with a lot of stuff.

● We saw how to write our own functions, but
python comes with lots of prebuilt functions in
Python.

● Some math ones like max and abs.
● But also other useful ones like dir and help

● dir returns a list of functions that are available.
● help returns information about a function or module.

May 17 2012

Types

● Every Python value has a type that describes
what sort of value it is and how it behaves.

● There is a built in function type that returns the
type of an expression.
● Useful for sanity checks so that you are sure that

you and python agree as to what your line of code
is doing.

● Can use it to check the type of a variable, and of a
function call.

May 17 2012

Type is more useful than the shell.

def foo(x):

return x

def goo(x):

print x

● Consider the following two functions:

● foo(9) and goo(9) look the same in the shell.
● But type(foo(9)) and type(goo(9)) highlights the

fact that the two functions behave differently.

May 17 2012

Home Stretch

● To finish off, we'll see how to create a non-trivial
program quite quickly.
● Some of the stuff we'll be using is a bit advanced,

so don't worry if you don't completely follow
everything.

● A lot of people create external modules that
extend the capabilities of python.
● We'll be using the media module, which was

created by UofT students.
● To use a module we import it with import

module_name

May 17 2012

Media Module

● The basic function of the Media Module is to
show pictures.
● pic = media.load_picture(filename) loads an image

into pic.
● media.show(pic) shows the picture.

● We want to use this to design a program that
can take a picture, and make it appear as if it
was taken at sunset.

May 17 2012

How do we do that?

● Well, we take what we know about image files.
● Basically we know that images files are really

many tiny coloured squares called pixels.
● Since we have RGB monitors, this means each

colour is a combination of red, green and blue.
● It turns out that the pixel colours are specified

by 3 numbers between 0 and 255 that say how
much red green and blue each pixel has.
● So (255,0,0) is red, while (0,255,0) is green and so

on.

May 17 2012

Leveraging our Knowledge.

● So we know about pixels.
● What do we know about sunset?

● Colours tend to be redder and less blue or green.

● So if we could change the colour values of each
pixel accordingly, we'd probably do pretty well.
● So let's try decreasing blue and green by 70%,

May 17 2012

Pseudo-Code version.

● We want something like:
● For every pixel,

get the (blue/green) component of that pixel.

Reduce this component by 30%

set the (blue/green) component of that pixel to the
new value.

● We're in luck, as there's a way to quickly go
over all the pixels.

May 17 2012

A General Approach

● While admittedly all planned beforehand, the
way we approached the problems was in three
stages.
● Design: We thought about what the right approach

was before writing any code.
● Code: Once we thought we had a good idea, we

wrote the code.
● Verify: we tested our code to make sure we weren't

making any dumb mistakes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

