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Welcome

● Please ask questions/let me know if I'm 
difficult to understand.

● This is an introduction to computer 
programming using Python.
● The order matters!

● Intended for people with no experience 
with programming.
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Course Website

http://www.cs.toronto.edu/~quellan/courses/csc108/

● Note that most of the stuff in the first part of lecture is 
covered in the info sheet available from the course 
website.

http://www.cs.toronto.edu/~quellan/courses/csc108/
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Is CSC 108H for me?

● CSC 148H is offered during this term.
● Instructor is Orion Buske.
● Assumes knowledge of basic python and object 

oriented concepts.
● Does more object oriented stuff and focuses on 

data structures.
● Lecture is R:4-6, One 2 hour lab per week.
● http://www.cdf.toronto.edu/~csc148h/summer/
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Well, how can I tell?

● CSC 148H is having a one-day ramp-up.
● Saturday May 19th 10am - 4pm and               

Saturday May 26th  10am - 4pm in BA 3185.
● http://www.cdf.toronto.edu/~csc148h/summer/rampup.shtml

● Intended for people haven't taken CSC 108H 
but have done some object-oriented 
programming.

● I encourage you do show up if you're uncertain 
which course you should be taking.
● Please register if you're going.



May 17 2012  

What will I be doing?

Work Weight Comment

Assignments(3) 10%,10%,12%

Midterm 13%

Labs(10) 5% 0.5% each.

Exercises(4) 2%, 2%, 3%, 3%

Final 40% Need to get at least 40% 
to pass the course
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Assignments!

● They will be posted on the website.
● Due 11:59pm on due date, submitted online.
● You will have the option to partner with one 

other person for at least two assignments.
● Not required to be monogamous.
● Can use discussion board and labs to meet 

people.
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Late Policy

● You have 2 grace days.
● Each grace day can be used to get a 24 hour 

extension on an assignment only.
● You must use grace days in increments of 1.
● Grace days cannot be stacked, if you wish.

● A team requires two grace days to get an 
extension.
● Each partner in a team must contribute one grace 

day.
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Exams!

● A midterm and a final.
● No, I don't know when or where either are yet.

● When I find out, I will post it on the website and the 
forum.

● The midterm will probably be Jun 28th, in the 
evening.

● They will be closed book written tests.
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Labs!

● Labs are done with a partner that is separate 
from your assignment partner(s).

● They are the tutorials that you sign up for on 
ROSI.

● They start next week.
● The room assignments are posted on the 

website.
● 3 of you have not signed up for a tutorial as of 

yesterday.
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Exercises!

● These are smaller assignments.
● They are only automarked.
● You will be able to submit before the deadline 

and see the results of the automarking on 
Markus.

● Will generally have 7~14 days to submit before 
the deadline.

● No remarks will be given for any reason.
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The Book.

● Practical 
Programming: An 
Introduction to 
Computer Science 
Using Python.

● Can get it cheaply on 
Amazon.

● Authors from the 
department.
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Getting Help.

● Office Hours.
● We're deciding on these right now!

● Can ask for help from your TA during labs.
● Course Discussion board.

● Link on website.

● Undergraduate Help Centre, BA 2270 2-4, 
Monday-Thursday.
● Start next Tuesday.
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More Help.

● If you can't make office hours or have 
extenuating circumstances, you can e-mail me.
● Use quellan@cs.toronto.edu
● Not quellan@cdf.toronto.edu
● Please check the discussion board first.

● If you need more practice or another 
perspective, check the getting help section of 
the website.

mailto:quellan@cs.toronto.edu
mailto:quellan@cdf.toronto.edu
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Academic Offences

● You should do all the work that you submit 
(work by your assignment partner counts).

● Never look at another team's works.
● Never show another team your work.
● Applies to all drafts and partial solutions.
● Discuss how to solve an assignment only with 

course staff.
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Feedback

● You can also give anonymous feedback via the 
feedback tab on the website.
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Administrative stuff that you can do!

● Read the course information sheet.
● Make sure you can find the website and 

discussion board.
● Buy textbook.
● Look up your CDF username.

● Need this to submit exercises/do labs!

● If you're working on your own machine, install 
the software under Python on the course 
website.
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Break, the first.
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What is CSC 108H about?

● Learning the basic tools of programming.
● We use Python for this, but the tools apply to most 

languages, and even scripts and macros.

● Being able to take human problems, and use 
programming to solve them.

● Have a better sense of what computer science 
is about.

– See how computer science can be applied to climate 
modelling, bioinformatics, medical science,etc.
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Why Programming?

● Powerful and general.

● Can hide a poem in a 
picture.

● Can remove redeye.

● Allows people to 
communicate securely.

● Can find optimal paths in 
huge maps.
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What is programming?

● A program is essentially a series of instructions.
● Like a recipe, or a knitting pattern.

● So why not use English?
● Too vague and dependent on context.

– “Eats shoots and leaves”.
● CPUs have a limited set of instructions.

● We need a language that is unambiguous.
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Python!

● Can be translated into a language that the CPU 
speaks.
● With no translation errors.

● Python is much more precise than English.
● Means every detail needs to be specified.

● Python is the language, but what reads it?
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Wing

● IDE (Integrated Development Enviroment)
● A set of tools used to help us develop code.
● For now we can think of it as the program that 

translates our python code for the CPU.
● A free version is linked from the website.
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Common Pitfalls

● Not understanding what each line of code is 
supposed to do.
● Will cause mistakes if you copy one batch of code 

from one program to another.
● Prevents you from being able to effectively write 

your own code.

● Not being able to trace code.
● This prevents you from being able to combine 

multiple lines of code.
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Types

● Every base object in python has a type.
● Know what type every object you are using is.
● Useful for sanity checks.
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Python as a Calculator

● The shell will interpret lines of python that we 
feed it.
● Thus it is useful to check the type of any expression 

we are using.
● So we can be sure that we agree with python as to 

what we are doing.

● Basic mathematical operations are part of 
python.
● So we can use python as a calculator.
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Python isn't very good at calculating

● You have multiplication, addition, subtraction, 
division remainder, and powers (*,+,-,/,%,**) but 
sometimes the answers are weird.

● If you give python integers, it will assume that 
you want integers back.

● For fractions, one uses floating point numbers.
● Python interprets any number with a decimal in it as 

a float.

● Floats are only approximations of real numbers.
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Variables

● A variable is a name that refers to a value.
● Variables let us store and reuse values in 

several places.
● But to do this we need to define the variable, 

and then tell it to refer to a value.
● We do this using an assignment statement.
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Assignment Statements

● Form: variable = expression
● An expression is a legal sentence in python that can 

be evaluated.
● So far we've put in math expressions into the shell 

and seen them be evaluated to single numbers.

● What it does:
● 1. Evaluate the expression on the RHS.(This value 

is a memory address)
● 2. Store the memory address in the variable on the 

LHS.
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Assignment Statements.

● 1. Evaluate the expression on the RHS.(This value 
is a memory address)

● 2. Store the memory address in the variable on the 
LHS.

● What this means is that a variable is a name 
and a memory address. The name points to a 
memory address where the value is stored.

● This means that variables in python behave 
fundamentally differently than variables in math. 
● Understanding is required to be able to trace code!
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Tracing Code with Variables

● When tracing code, we imagine the variables as 
names, and their values as objects they refer 
to.

● We draw names on one side, and the objects 
they refer to on the other.
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Tracing Code with Variables

● When tracing code, we imagine the variables as 
names, and their values as objects they refer 
to.

● We draw names on one side, and the objects 
they refer to on the other.

x: 0x1 
int

0x1
10
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Tracing Code with Variables

x = 10

y = 5+4

x: 0x1 

int

0x1
10

y: 0x2 

int

0x2
9
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Tracing Code with Variables

x = 10

y = 5+4

x = 13

x: 0x3 

int

0x3
13

y: 0x2 

int

0x2
9

int

0x1
10
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Tracing Code with Variables

x = 10

y = 5+4

x = 13

x: 0x3 

int

0x3
13

y: 0x2 

int

0x2
9
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Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● Which one of the two pieces of code above is 
legal, and what are the values at the end?
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Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● Which one of the two pieces of code above is 
legal, and what are the values at the end?
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Break, the second.

x = 15

y = 10

y = x

x = x + 1

y = x + y

x = 10

y, x = 15

x = x + 1

y = x + y

● x refers to 16
● y refers to 31
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Functions

● Sometimes we want to reuse code, with slightly 
different variables.

● If we need to take the average of lots of pairs of 
numbers, we could do

x = (num1 + num2)/2

● And then everywhere we need an average, we 
copy this code, and change the variable name.

● But what if there's a mistake?
● Need to change all the places we take this average.
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Functions

● Instead we can reuse code with functions.
● If we have the following somewhere:

def avg(num1, num2):

    return (num1 + num2)/2

● We can replace x = (num1 + num2)/2 with                  
                             x = avg(num1, num2)

● Now to fix the problem with our average we only need 
to change the return statement to:

return (num1 + num2)/2.0
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Functions

● A function definition has the form:
def function_name(parameters):

    block

● def is a python keyword; it cannot be used for 
naming functions or variables.

● A parameter of a function is a variable. A function 
can have any number of parameters, including 0.

● A block is a sequence of legal python statments.
– A block must be indented.

● If the block contains the keyword return, it returns a 
value; otherwise it returns the special value None.
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Functions

● Defining a function is different from calling it.
● Think about creating a recipe, vs actually 

cooking it.
● If we create a recipe for a cake, we don't have 

any cake yet, we only know how to create one.
● But once we have a recipe, we can create as 

many cakes as we like.
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Functions and Variables

● Consider the following Code:

def foo(y):
z = y

    return z

x = 10

foo(x)

print z

● What happens?
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Functions and Variables

def foo(y):

    z = y

    return z

x = 10

foo(x)

print z

● What happens?

● Functions can have 
variables that exist 
only within the 
function.
● These are called local 

variables.
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Functions and Variables

def foo(y):

    z = y

    return z

x = 10

foo(x)

print z

● What happens?

● Functions can have 
variables that exist 
only within the 
function.
● These are called local 

variables.
● They exist only within 

the red rectangle.
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Functions and Local Variables

● Recall the generic definition of a function:
def function_name(parameters):

    block

remainder of code
● Variables defined inside of a function are called local.

– This includes the parameters.
● Variables defined outside of a function are called global.
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Functions and Local Variables

● Recall the generic definition of a function:
def function_name(parameters):

    block

remainder of code
● Variables defined inside of a function are called local.

– This includes the parameters.
● Variables defined outside of a function are called global.
● Local variables live in the red box.
● Local variables override global variables with the same 

name.
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Functions and Variables

● Consider the following Code:

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● What gets printed?
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Functions and Variables

● Consider the following Code:

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● What gets printed? 10, then 11. Why?
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
● We need to step into 

the function.

int

0x1
10

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
int

0x1
10

x = ?

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to differentiate 

between local and 
global variables

int

0x1
10

x = ?

x = 0x1
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to differentiate 

between local and 
global variables

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
● Need to evaluate the 

parameter for foo.
● foo(x) is in global 

scope, uses global x.

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(0x1)

● Let's trace the code.
● Need to evaluate the 

parameter for foo.
● foo(x) is in global 

scope, uses global x.

int

0x1
10

x = ?

x = 0x1

foo locals:

Globals:
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(0x1)

● Let's trace the code.
● Now we can assign 

local value of x.

int

0x1
10

x = 0x1

x = 0x1

foo locals:

Globals:
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x1

x = 0x1

foo locals:

Globals:

int

0x1
10
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.
● To determine which x 

we choose, we start at 
the top and move 
down.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10
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Functions and Variables

def foo(x):

    x = 11

    return 0x2

x = 10

print x

print foo(x)

● Let's trace the code.

int

0x2
11

x = 0x2

x = 0x1

foo locals:

Globals:

int

0x1
10
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Functions and Variables

def foo(x):

    x = 11

    return 0x2

x = 10

print x

print 0x2

● Let's trace the code.
● When the function is called, 

we kill local variables, and 
return the memory address. 

int

0x2
11

x = 0x1Globals:

int

0x1
10
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Functions and Variables

def foo(x):

    x = 11

    return x

x = 10

print x

print 0x2

● Let's trace the code.
● So we can see why the 

second return value is 11.

int

0x2
11

x = 0x1Globals:

int

0x1
10
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Functions and Comments

● Often functions have complicated code.
● To make it easier for humans to understand, we 

often put in english sentences that we tell the 
computer to ignore.
● These are called comments.

● Two ways of commenting in python:

#The computer ignores this line.

'''The computer ignores all the lines between triple 
quotes, regardless of how many there are.'''
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Functions and Types

● Recall that every base object in python has a 
type.

● For now, it is useful to think of functions as 
things that take base objects of some types and 
generate new base objects that have types.

● So it is a recipe that takes some base objects 
and produces a new base object.
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Function Conventions

● Recall the format of a function:

def function_name(parameters):

    block

● This is all that is legally required for a function, 
but in practice we really use:

def function_name(parameters):

    '''(parameter types)-> output type       

    Description of what the function does.'''

    block
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Function Conventions

def avg(num1, num2):

    return (num1 + num2)/2.0

● Should actually be:

def avg(num1, num2):

    '''(int/float, int/float) -> float

    Takes two numbers and returns their average.'''

    return (num1 + num2)/2
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Function Conventions

def avg(num1, num2):

    '''(int/float, int/float) -> float

    Takes two numbers and returns their average.'''

    return (num1 + num2)/2

● Not:

def avg(num1, num2):

    '''(int/float, int/float) -> float

    Takes two numbers and returns their average       
    by adding them and dividing the result by 2.0.'''

    return (num1 + num2)/2
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Function Conventions

def avg(num1, num2):

    '''(int/float, int/float) -> float

    Takes two numbers and returns their average.'''

    return (num1 + num2)/2

● Not:

def avg(num1, num2):

    '''(int/float, int/float) -> float

    Takes two numbers and returns their average       
    by adding them and dividing the result by 2.0.'''

    return (num1 + num2)/2
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Naming Conventions.

● Naming rules and conventions apply to 
functions, variables and any other kind of name 
that you will see.

● Must start with a letter or underscore.
● Can include letters, numbers, and underscores 

and nothing else.
● Case matters, so age is not same name as 

Age.
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Naming Conventions.

● Python Convention: pothole_case
● That is, all lower case, and underscores seperate 

words.

● CamelCase is sometimes seen, but not for 
functions and variables.
● That is, capital letters separate words.

● Single letters are rarely capitalised.
● These conventions are important for legibility 

which factors into maintaining code.
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Python comes with a lot of stuff.

● We saw how to write our own functions, but 
python comes with lots of prebuilt functions in 
Python.

● Some math ones like max and abs.
● But also other useful ones like dir and help

● dir returns a list of functions that are available.
● help returns information about a function or module.
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Types

● Every Python value has a type that describes 
what sort of value it is and how it behaves.

● There is a built in function type that returns the 
type of an expression.
● Useful for sanity checks so that you are sure that 

you and python agree as to what your line of code 
is doing.

● Can use it to check the type of a variable, and of a 
function call.
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Type is more useful than the shell.

def foo(x):

return x

def goo(x):

print x

● Consider the following two functions:

● foo(9) and goo(9) look the same in the shell.
● But type(foo(9)) and type(goo(9)) highlights the 

fact that the two functions behave differently.
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Home Stretch

● To finish off, we'll see how to create a non-trivial 
program quite quickly.
● Some of the stuff we'll be using is a bit advanced, 

so don't worry if you don't completely follow 
everything.

● A lot of people create external modules that 
extend the capabilities of python.
● We'll be using the media module, which was 

created by UofT students.
● To use a module we import it with import 

module_name
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Media Module

● The basic function of the Media Module is to 
show pictures.
● pic = media.load_picture(filename) loads an image 

into pic.
● media.show(pic) shows the picture.

● We want to use this to design a program that 
can take a picture, and make it appear as if it 
was taken at sunset.
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How do we do that?

● Well, we take what we know about image files.
● Basically we know that images files are really 

many tiny coloured squares called pixels.
● Since we have RGB monitors, this means each 

colour is a combination of red, green and blue.
● It turns out that the pixel colours are specified 

by 3 numbers between 0 and 255 that say how 
much red green and blue each pixel has.
● So (255,0,0) is red, while (0,255,0) is green and so 

on.
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Leveraging our Knowledge.

● So we know about pixels.
● What do we know about sunset?

● Colours tend to be redder and less blue or green.

● So if we could change the colour values of each 
pixel accordingly, we'd probably do pretty well.
● So let's try decreasing blue and green by 70%, 
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Pseudo-Code version.

● We want something like:
● For every pixel,

get the (blue/green) component of that pixel.

Reduce this component by 30%

set the (blue/green) component of that pixel to the 
new value.

● We're in luck, as there's a way to quickly go 
over all the pixels.
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A General Approach

● While admittedly all planned beforehand, the 
way we approached the problems was in three 
stages.
● Design: We thought about what the right approach 

was before writing any code.
● Code: Once we thought we had a good idea, we 

wrote the code.
● Verify: we tested our code to make sure we weren't 

making any dumb mistakes.
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